García Santos, Alfonso ; orcid:0000-0002-7524-1453Neila González, Francisco Javier ; orcid:0000-0002-2645-86562024-07-172024-07-172009-06https://biblioteca-juandevillanueva.coam.org/handle/123456789/1545https://oa.upm.es/2910/En esta Tesis se ha diseñado, fabricado y ensayado –física, mecánica y térmicamente- un elemento constructivo derivado del yeso que, incorporando un 44,5% en peso de material de cambio de fase, es capaz de almacenar en 1,5 cm de espesor, 5 veces la energía térmica de una placa de yeso laminado con el mismo espesor, y la misma cantidad que una fábrica de ½ pie de ladrillo, en el rango de temperaturas próximas a la de confort. Para ello previamente se ha revisado y analizado la documentación disponible, en la actualidad, sobre sistemas de almacenamiento térmico en general, y almacenamiento en forma de calor latente –mediante materiales de cambio de fase- en particular. Se han estudiado diferentes posibilidades de integración de materiales de cambio de fase en elementos constructivos, y su interacción con ellos. Se han considerado los más adecuados –de acuerdo a sus propiedades físicas, químicas, mecánicas, térmicas- para utilizar en el campo de la edificación. Se ha elegido el yeso como material más adecuado para desarrollar un nuevo producto de construcción combinado con estos materiales de cambio de fase –por su disponibilidad, profusa utilización en el campo de la edificación y bajo coste. Se han estudiado a nivel teórico sus características y propiedades físicas y químicas, desde el nivel subatómico hasta el macroscópico. Ídem de los agregados que participan en el material compuesto (melamina formaldehído y fibras de polipropileno). Se ha analizado la normativa vigente de aplicación a los diversos productos derivados del yeso y la escayola, para observar su cumplimento. Experimentalmente se han combinado los agregados entre sí variando las proporciones para obtener diferentes compuestos, los cuales se han ensayado para conocer sus propiedades: físicas –densidad, porosidad, higroscopicidad, resistencia a fuego, durabilidad…; mecánicas –dureza, resistencia, flexibilidad,…-; estéticas, etc. Se han comparado los resultados obtenidos para obtener un modelo de comportamiento conjunto que sirva para prever las características de los diversos compuestos constituidos por estos agregados. Se ha elegido la combinación más adecuada para desarrollar constructivamente por la idoneidad de sus características Térmicamente se han evaluado las propiedades del nuevo compuesto (capacidad de almacenamiento o entalpía y resistencia térmica, temperatura de cambio de fase, ventana térmica) mediante el sistema de calorimetría diferencial de barrido, DSC. Se ha diseñado y puesto en funcionamiento una instalación experimental para el estudio del nuevo compuesto, intercambiando calor con aire. Se ha estudiado la influencia de diferentes parámetros y variables del sistema (temperatura de trabajo, velocidad del aire, presentación de los materiales de cambio de fase, ubicación en el edificio,…), para constituir un sistema de almacenamiento de calor latente, que -complementado con estrategias pasivas (captación solar, ventilación natural-) reduzca las necesidades de consumo energético para la climatización de edificios. Se ha desarrollado un modelo matemático –en base a las mediciones obtenidas- que simule el comportamiento real-experimental. Se ha evaluado la viabilidad de la incorporación de materiales de cambio de fase en placas de yeso. Lo poco que he aprendido carece de valor comparado con lo que ignoro y no desespero en aprender ABSTRACT In this Thesis has been designed, made and tested –physically, mechanically, and thermally- a gypsum board that, including a 44.5% by weight of PCM (phase change material), is able to store -in 1.5 cm thick- 5 times the thermal energy of a current gypsum board, and the same quantity that a 12 cm brick layer, in the comfort temperature range. To reach this aim, previously it has been gathered, organized and analyzed the available documentation, about thermal storage systems in general, and specifically latent heat storage systems -with phase change materials-, at the present time. It has been compiled in a document for enquiring in future researches. It is necessary to point out that during the development of this work the use of phase change materials or of state for energy storage has increased quickly and many products based on the technique of phase change materials have been introduced in the market. There have been considered the most suitable -according to their physical, chemical, mechanical, and thermal properties - to use in construction. Specially, there have been studied different integration possibilities of phase change materials in constructive elements, and the interaction/interplay between them. It has been chosen gypsum (for its availability, profuse use in construction and low cost) as the most appropriate material to combine with PCM to develop a new construction product. It has been studied -theoretically - its physical and chemical characteristics, from the subatomic level to the macroscopic one. Idem for the aggregates that have participated in the compound material (melamine formaldehyde and polypropylene fibres. The regulations in force -referred to the different gypsum derived products- have been revised to observe its compliance. Experimentally the aggregates have been combined varying the proportions to obtain different compound, which have been tested to ascertain their properties: physical-density, porosity, hygroscopicity, fire resistance, durability…; mechanical -hardness, resistance, flexibility, -; aesthetic, and so on. The results have been compared to obtain an overall behaviour pattern to predict the characteristics of different compounds made from these aggregates. The most appropriate combination –according to its characteristics- has been chosen, to develop a construction material Thermally, have been evaluated the new compound properties (thermal storage capacity or enthalpy and thermal resistance, phase change temperature, thermal range) using the differential scanning calorimetry system, DSC. An experimental facility has been designed and operated for the study of the new compound material, exchanging heat with air. It has been studied the influence of different parameters and system variables (working temperature, air velocity, display of the phase change materials, and location in the building…), to establish a latent heat storage system which - complemented with passive strategies (solar gains, natural ventilation) - reduces the acclimatization energy consumption in buildings. A mathematical model has been developed -based on the experimental data - simulating the real-experimental thermal behaviour The viability of gypsum boards with microencapsulated phase change materials incorporated has been evaluated. The little that I have learned is insignificant compared with what I ignore and I don't despair in learning.application/pdfapplication/pdfhttps://creativecommons.org/licenses/by-nc-nd/3.0/es/info:eu-repo/semantics/openAccessArquitecturaMaterialesIntegración de materiales de cambio de fase en placas de yeso reforzadas con fibras de polipropileno aplicación a sistemas de refrigeración y calefacción pasivos para almacenamiento de calor latente en edificiosTesis